Fall Special Offer!

Sign Up and Get Your Discount

Electromagnetic Field

An electromagnetic field is a physical field generated by electrically charged objects. This field can affect the behavior of charged particles in its vicinity, influencing […]

« Back to Glossary Index

An electromagnetic field is a physical field generated by electrically charged objects. This field can affect the behavior of charged particles in its vicinity, influencing various biological processes. In PEMF therapy, these fields are carefully controlled to interact positively with body tissues, enhancing healing and recovery by promoting cellular communication and function.

Electromagnetic Field (Wikipedia)

An electromagnetic field (also EM field) is a physical field, mathematical functions of position and time, representing the influences on and due to electric charges. The field at any point in space and time can be regarded as a combination of an electric field and a magnetic field. Because of the interrelationship between the fields, a disturbance in the electric field can create a disturbance in the magnetic field which in turn affects the electric field, leading to an oscillation that propagates through space, known as an electromagnetic wave.

The way in which charges and currents (i.e. streams of charges) interact with the electromagnetic field is described by Maxwell's equations and the Lorentz force law. Maxwell's equations detail how the electric field converges towards or diverges away from electric charges, how the magnetic field curls around electrical currents, and how changes in the electric and magnetic fields influence each other. The Lorentz force law states that a charge subject to an electric field feels a force along the direction of the field, and a charge moving through a magnetic field feels a force that is perpendicular both to the magnetic field and to its direction of motion.

The electromagnetic field is described by classical electrodynamics, an example of a classical field theory. This theory describes many macroscopic physical phenomena accurately. However, it was unable to explain the photoelectric effect and atomic absorption spectroscopy, experiments at the atomic scale. That required the use of quantum mechanics, specifically the quantization of the electromagnetic field and the development of quantum electrodynamics.

« Back to Glossary Index